nZVI的类芬顿技术对污水中COD去除有着非常好的效果,但nZVI易团聚,易被水中溶解氧氧化,其循环利用能力及反应活性会降低 ,从而阻碍了nZVI在实际废水处理中的应用。多项研究表明,将nZVI进行改性,或将其负载到活性炭、矿物等具有吸附性能的材料上,可保证nZVI的固有特性并大幅增强其稳定性,弥补其易团聚的缺点 。张寒旭等 制备氧化石墨烯负载Fe3O4磁性催化剂类芬顿处理高浓度制药废水,Fe3O4颗粒没有出现明显的团聚现象,芳香类和富里酸类物质得到有效去除。MAHDIEH等 以壳聚糖包裹活性炭作为载体,制备ACC-CH-nZVI催化剂类芬顿处理黑素类废水,具有较高的去除率和经济价值。
伊利石改性已取得很多进展,大量研究表明,伊利石经适当的酸处理能提高其对阳离子吸附能力,为伊利石嫁接改性剂提供条件 。利用十六烷基三甲基溴化铵(CTAB)对伊利石进行改性,可以改变伊利石表面的吸附性能,使纳米零价铁与伊利石共混时牢固地附着在伊利石表面,从而有效降低纳米零价铁的团聚,增强复合材料的催化性能 。本研究采用液相还原法生成纳米零价铁,将其负载在经CTAB改性后的伊利石上,制备成类芬顿催化剂(It/CTAB@nZVI),并对其进行了表征。选取第3代头孢菌素类抗生素头孢哌酮(CPZ)作为目标物,研究了不同催化剂体系对CPZ的降解效能,考察了H2O2浓度、It/CTAB@nZVI投加量和初始pH对该类芬顿体系去除CPZ效果的影响,探究了It/CTAB@nZVI类芬顿体系降解废水中头孢哌酮的机理。
1、实验材料与方法
1.1 实验仪器及试剂
1)实验仪器:X射线多晶衍射仪(XRD,日本理学UltimaIV)、场发射扫描电镜(SEM,美国FEIQuanta250FEG)、傅里叶变换红外光谱(FTIR,美国赛默飞NicoletIS5)、高效液相色谱(HPCL,安捷伦2000)、紫外-可见光谱(UV-VIS/NIR,日本岛津UV3600plus)、液质联用(LC-MS,美国赛默飞U3000)。
2)实验试剂:十六烷基三甲基溴化铵(C19H42BrNF.W.)、硝酸银(AgNO3)、过氧化氢(H2O2,30%)、六水合三氯化铁(FeCl3·6H2O)、异丙醇(C3H8O)、无水乙醇(C2H5OH)、硫酸(H2SO4)、硼氢化钠(NaBH4)、盐酸(HCl)均为分析纯,购于国药集团,甲酸(CH2O2)和甲醇(CH3OH)为色谱纯,购于Supelco德国达姆施塔特默克集团,伊利石(K<1(Al,R2+)2 2 ·nH2O,白色粉末)、头孢哌酮钠盐(C25H26N9NaO8S2,白色粉末,含量≥98%)购自于上海麦克林生化科技有限公司,实验用水为超纯水。
1.2 催化剂制备方法
1)有机改性伊利石的制备。称取20g磨好的伊利石粉末投放到600mL质量分数为5%的稀盐酸溶液中,于60℃恒温水浴锅搅拌2h,将混合液置于离心机上(5000r·min−1)离心5min,移去上清液,取下层沉积物冷冻干燥24h,研磨备用。把酸洗过的伊利石置于600mL质量分数为5%的CTAB(异丙醇∶水=1∶1)溶液中,60℃的恒温水浴搅拌2h,同样条件离心、冷冻干燥24h研磨后得到CTAB改性的伊利石,装入密封袋并放于干燥器中备用。
2)It/CTAB@nZVI的制备。It/CTAB@nZVI通过液相还原法制得:称取2.5gFeCl3完全溶解于100mL超纯水中,向其中加入0.5gCTAB改性伊利石搅拌均匀,移至三颈烧瓶,持续通入氮气,逐滴加入0.35mol·L−1 NaBH4溶液并搅拌,NaBH4将FeCl3中的Fe3+还原为纳米零价铁,生成的纳米零价铁负载在有机改性伊利石上,待反应30min后,将固体用离心机分离出来并用乙醇洗涤3次,再转移至真空烘干机60℃真空烘干12h,得到有机改性伊利石负载纳米零价铁类芬顿催化剂。
1.3 催化剂的表征方法
使用X射线多晶衍射仪(XRD)观察催化剂晶体结构,测试范围为3°~140°,铜靶1.6kW,电压40kV、电流40mA;使用场发射扫描电镜(SEM)观察催化剂的微观形貌;使用傅里叶变换红外光谱(FTIR)观察催化剂官能团的结构特征。
1.4 实验与分析方法
配制150mL浓度为100mg·L−1头孢哌酮溶液,将其放入锥形瓶中,用稀硫酸将溶液pH调至3.0,先后加入一定量的It/CTAB@nZVI和质量分数为30%的H2O2,用封口膜密封后置于恒温摇床(25℃,130r·min−1)中,定时取样,样品经0.22μm滤膜过滤后,用HPCL测定滤液中头孢哌酮浓度,设置3次平行实验。
用HPLC测定反应后的头孢哌酮浓度。色谱柱为AgilentZORBAXSB-Aq,流动相A为甲醇,流动相B为0.1%的甲酸溶液,A∶B(v∶v)=4∶6,流速为1mL·min−1,检测波长为254nm,柱温为35℃,进样量为20μL。采用紫外可见光谱(UV-VIS/NIR)测定CPZ降解产物在0~500nm内的吸光度,推测其中官能团的变化。采用液质联用(LC-MS)对CPZ降解中间产物进行检测。色谱柱为HypersilGold(100mm×2.1mm,ThermoFisher),扫描范围为50~700,流动相A为甲醇,B为0.1%甲酸水溶液,流速为0.25mL·min−1。
为测试催化剂的循环使用性能,每次实验结束后,取样测定CPZ浓度,用离心机分离出固体部分,经乙醇清洗3次后的催化剂真空冷冻干燥12h后继续循环使用。
2、结果和讨论
2.1 催化剂的表征
1)XRD图谱分析。It/CTAB@nZVI催化剂的X射线衍射(XRD)表征结果如图1所示。由图1可以看出,8.88°、20.88°、26.66°、50.16°出现了伊利石的特征衍射峰,而在It@CTAB的XRD谱图中,伊利石的特征峰位置不变且峰强增大。这说明伊利石经酸处理和CTAB改性后,其晶体结构没有被改变。H+将硅酸盐中的Al3+、Fe3+、Mg2+和Si4+置换出来,在CTAB的作用下,形成的结晶盐被吸附在伊利石的表面,使伊利石的结晶度增加。由It/CTAB@nZVI的XRD图谱可见,在44.8°出现了nZVI的特征衍射峰,同时在8.82°、20.82°、26.6°、50.1°出现了较尖锐的伊利石特征衍射峰。这说明制备的催化剂(It/CTAB@nZVI)同时具备nZVI和伊利石的晶体结构特征,证实nZVI已成功地附着在伊利石表面。
2)SEM图像分析。通过场发射扫描电镜(SEM)观察了It、It@CTAB、It/CTAB@nZVI的形态和分布,SEM图像如图2所示。由图2(a)可以看出,天然伊利石的表面光滑、边缘锋利,整体呈现出堆叠式结晶,片层之间结构紧密、空间狭小,因此在一定程度上削弱了伊利石的负载能力。由图2(b)可以看出,酸与硅酸盐反应形成沟壑状的表面,加强了伊利石的吸附能力;CTAB与伊利石反应并包裹在其表面,改变了伊利石表面的吸附性能,使纳米零价铁均匀地附着在伊利石表面。这与XRD的表征结果一致。nZVI颗粒均匀分布在It@CTAB的表面和边缘。这可有效防止纳米零价铁的团聚。
3)FTIR图谱分析。It@CTAB、nZVI、It/CTAB@nZVI的FTIR图谱如图3所示。3626、3433和3410cm−1处出现的吸收峰是水分子振动吸收峰;1082cm−1和1031cm−1处较高的吸收带是Si—O—Si振动吸收峰。在It/CTAB@nZVI的图谱中,796、780、693cm−1处主要为伊利石表面Al—OH和Si—O—Al振动吸收峰,且与It@CTAB上出峰位置一致,说明nZVI成功地附着在伊利石表面;在It/CTAB@nZVI和nZVI的FTIR图谱中,3410、1619、3433和1629cm−1处为Fe表面的羟基振动峰,619cm−1和594cm−1为Fe—O和Fe—OH—Fe的特征峰 ,这进一步证明It/CTAB@nZVI的成功制备,验证了以上XRD和SEM的结果。
2.2 It/CTAB@nZVI性能评价
在加入H2O2前后nZVI、It@nZVI和It/CTAB@nZVI对CPZ降解效果的影响如图4所示。在未加入H2O2时,nZVI、It@nZVI和It/CTAB@nZVI对CPZ的去除率分别为15.8%、29.4%、38.8%,说明nZVI、It@nZVI和It/CTAB@nZVI均具有一定的吸附性,It和It/CTAB组分可强化nZVI对CPZ的吸附效能。在加入H2O2之后,nZVI、It@nZVI和It/CTAB@nZVI的类芬顿体系对CPZ的降解率均有不同程度的提升,CPZ的去除率分别为77%、87%、96.4%。这主要是因为催化剂与H2O2发生类芬顿反应,产生的羟基自由基将CPZ氧化降解,而It/CTAB@nZVI的类芬顿体系对CPZ的降解效果最好,说明nZVI通过负载在改性伊利石上可提高催化剂类芬顿的催化效能 。
2.3 It/CTAB@nZVI类芬顿体系降解模拟头孢哌酮废水
1)H2O2浓度对降解效果的影响。在温度为25℃、pH为3.0、CPZ为100mg·L−1、催化剂投加量为0.025g·L−1的条件下,H2O2浓度(0、1.6、3.2、4.8、6.4mmol·L−1)对CPZ去除效果的影响如图5所示。CPZ去除率随着H2O2浓度的增加而增加;当H2O2浓度为0mmol·L−1时,振荡60min后CPZ去除率仍有9%。这是由于伊利石的吸附性和nZVI本身还原性的共同作用。当H2O2浓度逐渐增加到4.8mmol·L−1时,CPZ去除率最大可达97%,说明CPZ去除率的提高主要是由催化剂活化H2O2产生·OH氧化降解所致,而伊利石的引入为催化剂提供了更多的吸附和氧化点位 ,增强了催化剂活性,从而提高了催化效率。当H2O2浓度继续增加到6.4mmol·L−1时,CPZ去除率下降到86%。这可能是由于过量H2O2淬灭了·OH,而生成的羟基铁复合物或氢氧化铁沉淀物覆盖在催化剂表面使其钝化,降低了催化反应的传质动力 。
2)催化剂投加量对降解效果的影响。在温度为25℃、pH为3.0、CPZ质量浓度为100mg·L−1、H2O2浓度为3.2mmol·L−1的条件下,不同催化剂投加量(0、0.01、0.02、0.03、0.04g·L−1)对CPZ去除影响的结果如图6所示。CPZ去除率随着催化剂投加量的增加而增加。当催化剂的投加量为0时,CPZ降解效率没有明显变化,这是由于H2O2自身无法分解出有强氧化性的·OH,使CPZ难以氧化分解。当催化剂投加量逐渐增加到0.03g·L−1时,反应60min后CPZ去除率提高到96.2%,说明此时Fe2+的溶出度较高,有利于H2O2产生·OH。当催化剂投加量继续增加到0.04g·L−1时,CPZ去除率降低至90.4%,这是因为催化剂溶出过量的Fe2+会消耗掉部分·OH ,导致没有足量的·OH氧化降解CPZ。
3)初始pH对降解效果的影响。在温度为25℃、催化剂投加量为0.03g·L−1、CPZ质量浓度为100mg·L−1、H2O2浓度为3.2mmol·L−1的条件下,不同初始pH(2、3、4、5)对CPZ去除率和Fe2+溶出度的影响结果如图7所示。由图7(a)可见,当初始pH为2~5时,CPZ去除率随着初始pH的升高而减小,在pH为2时最高达到99.4%。由图7(b)可见,Fe2+的溶出浓度随pH的升高而降低,当pH为2时,Fe2+的溶出浓度最高。因此,在酸性条件下催化剂能溶出充足的Fe2+,从而提高催化效率 。同时,酸性条件还能提高溶液中的·OH活性,限制羟基铁复合物或氢氧化铁的生成使催化剂表面钝化 。当pH不断升高时,Fe2+的溶出度降低,催化活性减弱,同时OH−会消耗部分H2O2,使·OH的浓度降低,从而导致CPZ去除率降低。
4)催化剂的稳定性分析。It/CTAB@nZVI、It@nZVI和nZVI降解CPZ的重复性结果如图8所示。在4次重复使用后,It/CTAB@nZVI、It@nZVI和nZVI对CPZ的去除率分别降低了15.4%、29.5%和39.6%,但It/CTAB@nZVI对CPZ的去除率仍稳定在80%左右。由此可见,It/CTAB@nZVI催化剂在类芬顿体系处理中具有较强的催化能力和良好的使用性能。
2.4 头孢哌酮降解机理分析
1)紫外谱图分析。紫外可见光谱反映了化合物官能团结构的能级跃迁情况,It/CTAB@nZVI类芬顿体系在不同时间对头孢哌酮氧化降解的紫外吸收光谱图如图9所示。CPZ的紫外光谱图在220~280nm处出现吸收峰变化,可推测溶液中化合物包含共轭双键、醛基或酮基。在230nm处的吸收峰对应β-内酰胺环 。随着反应时间的增加,230nm处的峰迅速降低,说明β-内酰胺环被破坏,导致头孢哌酮被降解。
2)CPZ降解产物及路径分析。为了进一步研究头孢哌酮的降解机理和降解途径,通过液质联用(LC-MS)来分析It/CTAB@nZVI类芬顿体系降解CPZ的中间产物。CPZ中间产物质谱图及CPZ可能的降解途径如图10和图11所示。由图11可知,CPZ的分子结构在羟基自由基的氧化下逐渐破坏,首先是β-内酰胺环两端支链结构吡啶环和噻唑环氧化的脱离,以及与β-内酰胺环相连的噻嗪环氧化脱硫,然后再发生C-C和C-O键断裂、羟基加成和脱羟基等反应,形成部分仍具有苯环的中间产物 。随着活性自由基的进一步作用,头孢中间体逐渐氧化分解为小分子的有机酸及醇类,最终被彻底降解为CO2、H2O、NO3−、NH4+、SO42−等无机物。
3、结论
1)nZVI能均匀附着在伊利石表面,可有效防止纳米零价铁的团聚,提高催化剂类芬顿的催化效能。
2)在CPZ质量浓度为100mg·L−1、类芬顿体系中H2O2浓度为3.2mmol·L−1、催化剂投加量为0.03g·L−1、初始pH为2时,CPZ的最大去除率可达到99.4%。
3)在羟基自由基的作用下,CPZ的β-内酰胺环两端支链被氧化,生成芳香烃、有机酸及醇类等中间产物,随着羟基自由基进一步氧化,最终被彻底降解为CO2、H2O、NO3−、NH4+、SO42−等无机物。
广东建树环保科技有限公司是一家专业从事工业废水处理、工业废气处理和环境修复的环保设备研发与销售服务的企业。为工业企业和市政工程等项目提供工业废水处理、工业废气处理、有机废气VOCs处理的一体化解决方案,从“工程设计”、“工程承包”、“设备采购”、“安装调试”、“耗材销售”、“运营管理”、“环评办理”等环节提供专业的差异化服务,联系电话:135 5665 1700。